Spectroscopy Using Quantum Logic

D. B. Hume, T. Rosenband, P. O. Schmidt[†], J. C. J. Koelemeij[‡], J.C. Bergquist, W. M. Itano, D. J. Wineland

National Institute of Standards and Technology, Boulder, Colorado

Overview

Fundamental steps for precision spectroscopy in an ion trap:

Cool → Initialize → Probe → Detect

- Traditionally, all steps are performed on the ion under study, however, not all ions have accessible transitions that can be used
- Problem: Perform spectroscopy without a local transition for cooling or detection
- · Idea: Put a second ion in the same trap to aid in cooling. initialization and detection through the use of coherent population
- . Sympathetic Cooling can reach ground state of collective motion¹
- · State Initialization can be made directional, deterministic and fast employing a second ion
- . Detection can be achieved by transferring information from the spectroscopy ion to the logic ion2
- In our application, we use this technique to operate an 27AI+ ion as an optical frequency standard
- 27AI+
- Wineland D.J. et. al., Proceedings of 6th Symposium on Frequenc Standards and Matrology, P. Gill, ed (World Scientific, Singapore, 2002) pp. 3th 1981

- Single-zone, microfabricated, linear, Paul
- · Typical Operating Parameters:

RF Frequency	103 MHz
COM Frequency	2.62 MHz
Radial Frequencies	13-15 MHz
Inter-ion Spacing	~4µm
Vacuum Pressure	~10 ⁻¹¹ Torr

Sympathetic Cooling

- "Spectroscopy" ion (27Al+) can be brought to ground state by laser cooling "logic" ion (9Be+).
- Trap ions and reach (n) < 10 by Doppler cooling in a direction with components along all eigenmodes of motion
- ·Six modes of motion to cool for two ions in 3-D
- Cool to ground state for axial modes using Raman sideband pulses on Be+
- · Compensate for poor coupling of Be+ to radial modes using an additional, radial electric field to momentarily tilt the ion

Ground State Spectrum on Be+

Deterministic Preparation

- Cannot rely on spontaneous emission to optically pump Al+
- •Beginning in motional ground state, perform sequence of sideband pulses followed by cooling on Be+
- 1) Directional. Sideband pulses from ground state between two levels only drive one direction.
- 2) Deterministic. Switching role of spontaneous emission to Be+ makes procedure purely deterministic

Example of scheme for deterministically preparing ion in $m_E = -1/2$

State Detection

- •¹S₀→¹P₄Detection transition in Al+ is inaccessible
- Beginning in ground state of motion, transfer information from Al+ internal state to motional state then to Be+ internal state using red sideband pulses (RSB)
- In the special case that one gubit is in the ground state, the transfer pulses implement a SWAP gate.
- •State detected using resonant flourescence on Be+

Schematic and circuit diagrams for state transfer

3P0 as a Frequency Standard

Laser Stabilization and Frequency Measurement Scheme

- ·Optical atomic clocks have the potential to improve accuracy and stability of frequency standards
- •Al+ 1S₀-3P₀ has several favorable qualities for use as a clock (extremely small blackbody shift, negligible electric quadrupole shift, and small AC stark shift)

Clock Interrogation Scheme

Average of two stretched states gives a first-order B-field independent frequency

Results

- •Deterministic state preparation has been achieved and demonstrated on ³P₁ Zeeman
- frequency from line center [MHz]
- **Demonstration of State Preparation**
- •Found 3Po transition and performed Rabi spectroscopy with a minimum Fourier-limited linewidth of 40 Hz
- Evaluated a number of systematics related to the absolute frequency measurement of the ³P₀ transition
- •Routinely achieve ~50% contrast on ³P₀. Currently believed to be limited by laser phase noise due to table vibrations, air currents or acoustic noise.

Observation of ³P₀ line

Outlook

Immediate Goals

·Improve frequency comparison with Hg+ ·Finish evaluating relevant systematics

New Apparatus!

NIST

- •New Trap: Symmetric Linear RF trap
- •No insulating surfaces near ions ·Individual DC voltage control of each electrode
- Axial probing possible
- Additional laser for ¹S₀→³P₄ ·Better preparation, better state transfer - better contrast?
- Trap doppler cancellation, new reference cavities - longer probe times?

New Trap and its First Ions

Long-term Objectives

- •Test temporal variation of fundamental constants ·Entangled clock for better stability

Preliminary Error Budget

